本書機(jī)械工程材料課程英文教材,既可用做雙語教學(xué),也可用于專業(yè)英語學(xué)習(xí)。本教材的特色是講述內(nèi)容符合國內(nèi)實(shí)際,如在相關(guān)一些材料牌號(hào)上選用了國內(nèi)名稱,避免了外文同類教材國外材料牌號(hào)與國內(nèi)不一樣的問題。其次,本教材語言通俗易懂,除了一些必備的專業(yè)名詞外,論述避免了大段的從句或不常用的生僻字,讓學(xué)生便于理解。本書是基于“工程材料”是機(jī)械或近機(jī)械專業(yè)的一門專業(yè)基礎(chǔ)課,本教材出版后應(yīng)該具有較可觀的市場(chǎng)前景。
前 言
本書為“機(jī)械工程材料”課程的雙語教學(xué)配套教材。該課程屬于工科院校機(jī)械類專業(yè)的一門專業(yè)基礎(chǔ)課。目前,在高校的教學(xué)中運(yùn)用雙語教學(xué)已成為教學(xué)改革的重點(diǎn)和熱點(diǎn)。早在2001年,國家教育部發(fā)出的《關(guān)于加強(qiáng)高等學(xué)校本科教學(xué)工作提高教學(xué)質(zhì)量的若干意見》的文件,就明確提出在大學(xué)推廣雙語教學(xué)。按照“教育要面向現(xiàn)代化、面向世界、面向未來”的要求,為適應(yīng)經(jīng)濟(jì)全球化和科技國際化的挑戰(zhàn),本科教育要?jiǎng)?chuàng)造條件使用英語等外語進(jìn)行公共課和專業(yè)課的教學(xué)。本書的編寫籌備多年,主要素材來自于多年的雙語教學(xué)實(shí)踐過程積累的英語講義及科研實(shí)踐中的第一手資料;同時(shí)在本書編寫過程中,作者也參考了國內(nèi)外相關(guān)教材、著作及文獻(xiàn)。
本書的編寫,主要強(qiáng)調(diào)兩大特點(diǎn)。一為英語語言的簡(jiǎn)單平實(shí),通俗易懂。雙語教學(xué)的開展,最大的障礙在于語言。我們?cè)跍?zhǔn)確表達(dá)相關(guān)專業(yè)術(shù)語的前提下,力求用科技論文式的論述來表達(dá)所述知識(shí)點(diǎn),盡量做到淺顯、易懂,避免文中出現(xiàn)大量的復(fù)雜句型、生僻字等。二為內(nèi)容的聯(lián)系實(shí)際、貼近生活!皺C(jī)械工程材料”課程涵蓋的知識(shí)面較廣,包含了常用工程材料的性能、結(jié)構(gòu)、加工及熱處理方面的相關(guān)知識(shí)。由于“機(jī)械工程材料”為學(xué)科基礎(chǔ)課,學(xué)生往往不具有較深厚的實(shí)踐經(jīng)驗(yàn)。因此,本書在編寫時(shí),相關(guān)素材的選取力求與生活緊密相關(guān),從而使學(xué)生能更好地去體會(huì)和理解所述知識(shí)點(diǎn)。
全書共分為13章。第4章、第5章、第6章、第8章、第10章、第12章及第13章由陳朝霞、滿華、李力編寫;第2章、第3章、第7章及第9章由何柏林、李樹楨編寫;第11章由匡唐清編寫;第1章由徐先鋒編寫。全書由陳朝霞、何柏林統(tǒng)稿。作者還為本書配備了精美的課件,供購買者免費(fèi)索取。
由于作者水平有限,本書難免存在不當(dāng)之處,敬請(qǐng)讀者批評(píng)指正。
作 者
2016年5月10日
陳朝霞,湖北荊州人,昆明理工大學(xué)機(jī)械專業(yè)畢業(yè),南昌大學(xué)攻讀機(jī)械工程材料方向博士在讀,現(xiàn)為華東交通大學(xué)機(jī)電工程學(xué)院講師,主要從事材料成型的研究工作,主持或參與課題多項(xiàng),發(fā)表文章20余篇,已參編化學(xué)工業(yè)出版社組織的《機(jī)械工程材料》《材料成型工藝基礎(chǔ)》2部。
Contents
Chapter 1 Introduction 1
1.1 Concepts and sorts of materials and what the function and status of
the material are in society revolution 2
1.2 Conteat and Relation of materials science and engineering 5
1.3 Development of materials 7
1.4 Materials and mechanical engineering 10
Chapter 2 The Mechanical Properties Of Metals 13
2.1 Introduction 13
2.2 Static mechanical properties 14
2.3 Hardness tests 22
2.4 Impact toughness 27
2.5 Fracture toughness 30
2.6 Fatigue tests 32
2.7 Test at elevated tempearatures 34
2.8 Variability of material properties 35
Chapter3 Crystal Structure and Crystallizing 37
3.1 Crystal structure of metals 37
3.2 Actual structure of metals 47
3.3 Crystallization of metal 53
3.4 Structure of steel ingot 59
Chapter4 Plastic Deformation and Recrystallization of Metal 62
4.1 Plastic deformation of metal 62
4.2 Effects of plastic deformation on structure and property of metal 67
4.3 The change of structure and property of deformed metal during heating 70
4.4 Hot working of metal 75
4.5 Superplasticity 76
Chapter5 Binary Alloy 78
5.1 Definitions and basic concepts 78
5.2 Phase structure of alloy 80
5.3 Binary alloy diagram 83
Chapter 6 Iron Carbon Alloys 99
6.1 Phase structure and properties of iron carbon alloys 99
6.2 Iron carbon equilibrium diagram 101
6.3 Plain carbon steels 115
Chapter 7 Heat Treatment of Steel 120
7.1 Introduction 120
7.2 Formation of austenite during heating 122
7.3 Decomposition of austenite during cooling 129
7.4 Annealing of steel 140
7.5 Normalising of steel 144
7.6 Hardening of steel 146
7.7 Tempering of steel 159
7.8 The surface quenching of steel 165
7.9 The chemical heat treatment of the steel 170
Chapter 8 Alloy Steels 177
8.1 Effects of alloying elements in steel 177
8.2 Mechanisms of strengthening in metals 183
8.3 Categories and code of alloy steels 186
8.4 Structural alloy steels 186
8.5 Tool steels 195
8.6 Steels for special use 202
Chapter 9 Cast Iron 207
9.1 Introduction 207
9.2 Graphitisation of cast iron 207
9.3 Classify of cast iron 209
9.4 Grey cast iron 211
9.5 Malleable cast iron 214
9.6 Spheroidal cast iron 218
9.7 Vermicular cast iron 223
9.8 Alloy cast iron 224
Chapter10 Nonferrous Metals and Their Alloys 228
10.1 Aluminum and its alloys 229
10.2 Copper and its alloys 237
10.3 Magnesium and its alloys 241
10.4 Titanium and their alloys 243
10.5 Bearing alloys 247
Chapter 11 Polymer 250
11.1 Introduction 250
11.2 Classification of polymers 251
11.3 Structural characteristics of polymers 255
11.4 Properties of polymers and plastics 266
11.5 Additives for plastic materials and compounding 277
11.6 Polymer processes 279
11.7 Properties and utilities of selected polymers 283
Chapter 12 Advanced Materials 285
12.1 Introduction 285
12.2 Information functional materials 285
12.3 Composite materials 286
12.4 Smart materials 292
12.5 Nanomaterials 294
12.6 Biomaterial 300
12.7 Porous materials 301
Chapter 13 Material Selecting for Parts 304
13.1 Failure of mechanical parts 304
13.2 General principles for selecting suitable materials 310
13.3 Selecting suitable material for typical parts and working process 311
References 316
1.3 Development of materials
Materials themselves are foundations and supports of material civilization, and they also support the developments of other new technology in the exploitation, refinement, transformation and transportation of energy resource and the transmission, storage application and control of information cannot be apart from material technology; and structure materials and functional material are necessary for space technology, ocean engineering, biological engineering and system engineering.
Materials are always faced with the choice of society, and this choice depends on the requirement of society. Five criterions are required to decide whether one material can be accepted by society: resource, energy resource, environmental protection, economic and performance. When the restrictions of resource, energy resource, environment are satisfied, the property and economic efficiency material should also be concerned.
The development of material is in competitive conditions all the time. One of them is the competition between metal materials, ceramic materials and high polymer materials; the other one is different types of competition in the categories of materials, such as competition between ferrous metals and nonferrous metals, but they all belong to the metal. The average weight of a car in America was 1 500 kg in 1980 and reduced to 1 020 kg in 1990. The proportion of cast iron dropped from 15% to 11%. The amount of cast iron in one car dropped from 225 kg to 112 kg; the proportion of aluminum alloy rose from 4% to 9%; the proportion of high polymer materials rose from 6% to 9%. Automobile engines which adopt ceramic materials replaced automobile engines which adopt metal materials, which bring significant economic effect. Ceramic can withstand much higher temperature than metal, thus burning efficiency of ceramic can be improved, and the weight of automobile engine can be decreased at the same time. Because of that, the development of ceramic material based engine is blooming all around world.
Besides, symbiotic relationships between materials, can also be mutual promotion. For example, slag is byproduct of blast furnace iron making, but slag can be raw material of cement; the byproduct of coking-artificial coal, is an important chemical material.
Concerning the further development of the material, there are two aspects to disscuss, one is the improvement of traditional materials, while the other one is the development of new materials.
……