關于我們
書單推薦
新書推薦
|
原子物理學 讀者對象:高年級本科生及低年級研究生
本書主要是為本科高年級原子物理課程編寫的教材,前幾章中所包含的原子物理內容對于本科生來說是易于理解。本書介紹了原子物理的最新發(fā)展,及其在原子的玻色-愛因斯坦凝聚中物質波干涉測量和用捕獲離子進行量子計算中的應用,為了彌補一般同類著作僅用量子理論處理原子結果的不足,本書特別強調實驗基礎,在后面的章節(jié)中尤其如此。本書還附有大量習題以供讀者聯系。
更多科學出版社服務,請掃碼獲取。
This book is primarily intended to accompany an undergraduate coursein atomic physics. It covers the core material and a selection of moreadvanced topics that illustrate current research in this field. The firstsix chapters describe the basic principles of atomic structure, startingin Chapter 1 with a review of the classical ideas. Inevitably the dis-cussion of the structure of hydrogen and helium in these early chaptershas considerable overlap with introductory quantum mechanics courses,but an understanding of these simple systems provides the basis for thetreatment of more complex atoms in later chapters. Chapter 7 on theinteraction of radiation with atoms marks the transition between theearlier chapters on structure and the second half of the book which cov-ers laser spectroscopy, laser cooling, Bose-Einstein condensation of di-lute atomic vapours, matter-wave interferometry and ion trapping. Theexciting new developments in laser cooling and trapping of atoms andBose-Einstein condensation led to Nobel prizes in 1997 and 2001, respec-tively. Some of the other selected topics show the incredible precisionthat has been achieved by measurements in atomic physics experiments.This theme is taken up in the final chapter that looks at quantum infor-mation processing from an atomic physics perspective; the techniquesdeveloped for precision measurements on atoms and ions give exquisitecontrol over these quantum systems and enable elegant new ideas fromquantum computation to be implemented.
The book assumes a knowledge of quantum mechanics equivalent to anintroductory university course, e.g. the solution of the SchrSdinger equa-tion in three dimensions and perturbation theory. This initial knowledgewill be reinforced by many examples in this book; topics generally re-garded as difficult at the undergraduate level are explained in some de-tail, e.g. degenerate perturbation theory. The hierarchical structure ofatoms is well described by perturbation theory since the different layersof structure within atoms have considerably different energies associatedwith them, and this is reflected in the names of the gross, fine and hyper-fine structures. In the early chapters of this book, atomic physics mayappear to be simply applied quantum mechanics, i.e. we write down theHamiltonian for a given interaction and solve the SchrSdinger equationwith suitable approximations. I hope that the study of the more ad-vanced material in the later chapters will lead to a more mature anddeeper understanding of atomic physics. Throughout this book the ex-perimental basis of atomic physics is emphasised and it is hoped that the reader will gain some factual knowledge of atomic spectra.
目錄
1 早期原子物理學 1 1.1 導引 1 1.2 氫原子光譜 1 1.3 Bohr理論 3 1.4 相對論效應 5 1.5 Moseley和原子數 7 1.6 輻射衰變 11 1.7 愛因斯坦A系數和B系數 11 1.8 Zeeman效應 13 1.8.1 Zeeman效應的實驗觀察 17 1.9 原子單位總結 18 習題 19 2 氫原子 22 2.1 Schrodinger方程 22 2.1.1 角向方程的解 23 2.1.2 徑向方程的解 26 2.2 躍遷 29 2.2.1 選擇定則 30 2.2.2 對θ的積分 32 2.2.3 宇稱 32 2.3 精細結構 34 2.3.1 電子的自旋 35 2.3.2 自旋軌道相互作用 36 2.3.3 氫原子的精細結構 38 2.3.4 Lamb位移 40 2.3.5 精細能級之間的躍遷 41 進一步閱讀 42 習題 42 3 氦原子 45 3.1 氦原子的基態(tài) 45 3.2 氦原子的激發(fā)態(tài) 46 3.2.1 自旋本征態(tài) 51 3.2.2 氦原子中的躍遷 52 3.3 氦原子中的積分估計 53 3.3.1 基態(tài) 53 3.3.2 激發(fā)態(tài):直接積分 54 3.3.3 激發(fā)態(tài):交換積分 55 進一步閱讀 56 習題 58 4 堿金屬 60 4.1 殼層結構和周期表 60 4.2 量子數虧損 61 4.3 中心場近似 64 4.4 Schrodinger方程的數值解 68 4.4.1 自洽解 70 4.5 自旋軌道相丘作用:量子方法 71 4.6 堿金屬的精細結構 73 4.6.1 精細結構躍遷的相對強度 74 進一步閱讀 75 習題 76 5 L-S耦合方式 80 5.1 L-S耦合方式的精細結構 83 5.2 j-j偶合方式 84 5.3 居間耦合:不同耦合方式之間的躍遷 86 5.4 L-S耦合方式的選擇定則 90 5.5 Zeeman效應 90 5.6 93 進一步閱讀 94 習題 94 6 超精細結構和同位素移位 97 6.1 超精細結構 97 6.1.1 s電子的超精細結構 97 6.1.2 氫微波激射器 100 6.1.3 l≠0時的超精細結構 101 6.1.4 超精細結構與精細結構的比較 l02 6.2 同位素移位 105 6.2.1 質量效應 105 6.2.2 體積移位 106 6.2.3 原子揭示的原子核信息 108 6.3 Zeeman效應和超精細結構 108 6.3.1 弱場下的Zeeman效應,μBB<A 109 6.3.2 強場下的Zeeman效應,μBB>A 110 6.3.3 111 6.4 超精細結構的測量 112 6.4.1 原子束技術 114 6.4.2 原子鐘 118 進一步閱讀 119 習題 120 7 原子與輻射的相互作用 123 7.1 方程的建立 123 7.1.1 振蕩電場的擾動 124 7.1.2 旋波近似 125 7.2 愛因斯坦B系數 126 7.3 與單色輻射的相互作用 127 7.3.1 π脈沖與π/2脈沖 128 7.3.2 Bloch矢量和Bloch球面 128 7.4 Ramsey條紋 132 7.5 輻射阻尼 134 7.5.1 經典偶極輻射阻尼 135 7.5.2 光Bloch球面 137 7.6 光吸收截面 138 7.6.1 純輻射展寬截面 141 7.6.2 飽和強度 142 7.6.3 功率展寬 143 7.7 交流Stark效應/光頻移 144 7.8 145 7.9 146 進一步閱讀 147 習題 148 8 無Doppler激光光譜 151 8.1 譜線的Doppler展寬 151 8.2 交叉束技術 153 8.3 飽和吸收光譜 155 8.3.1 飽和吸收光譜的原理 156 8.3.2 飽和吸收光譜的穿越共振 159 8.4 雙光子光譜 163 8.5 激光光譜的校準168 8.5.1 相對頻率的校準 168 8.5.2 絕對校準 169 8.5.3 光頻梳 171 進一步閱讀 175 習題 175 9 原子冷卻與捕陷 178 9.1 散射力 179 9.2 減慢原子束 182 9.2.1 啁啾冷卻 184 9.3 光學黏膠技術 185 9.3.1 Doppler冷卻的極限 188 9.4 磁光阱 190 9.5 偶極力導論 194 9.6 偶極力理論 197 9.6.1 光學品格 201 9.7 Sisyphus冷卻技術 203 9.7.1 概論 203 9.7.2 Sisyphus冷卻 204 9.7.3 Sisyphus冷卻機制的極限 207 9.8 Raman躍遷 208 9.8.1 Raman躍遷的速度選擇 208 9.8.2 Raman冷卻 210 9.9 原子噴泉 211 9.10 總結 213 習題 214 10 磁捕陷、蒸發(fā)冷卻和Bose-Einstein凝聚 218 10.1 磁捕陷的原理 218 10.2 磁捕陷 220 10.2.1 徑向約束 220 10.2.2 軸向約束 221 10.3 蒸發(fā)冷卻 224 10.4 Bose-Einstein凝聚 226 10.5 捕陷原子蒸氣中的Bose-EinsLein凝聚 228 10.5.1 散射長度 229 10.6 種Bose-Einstein凝聚體 234 10.7 Bose凝聚氣體的性質 239 10.7.1 聲速 239 10.7.2 消退長度 240 10.7.3 Bose-Einstein凝聚的相干性 240 10.7.4 原子激光 242 10.8 總結 242 習題 243 11 原子干涉 246 11.1 楊氏雙縫實驗 247 11.2 原子的衍射光柵 249 11.3 三光柵干涉儀 251 11.4 旋轉的測量 251 11.5 光對原子的衍射 253 11.5.1 Raman躍遷干涉測量技術 255 11.6 總結 257 進一步閱讀 258 習題 258 12 離子阱 259 12.1 電場中離子的受力 259 12.2 Earnshaw定理 260 12.3 Paul阱 261 12.3.1 旋轉馬鞍上小球的平衡 262 12.3.2 交流場中的有效勢 262 12.3.3 線性Paul阱 262 12.4 緩沖氣冷卻 266 12.5 激光冷卻捕陷離子 267 12.6 量子跳躍 269 12.7 Penning阱和Paul阱 271 12.7.1 Penning阱 272 12.7.2 離子的質譜 274 12.7.3 電子的反常磁矩 274 12.8 電子束離子阱 275 12.9 解析側帶冷卻 277 12.10 離子阱總結 279 進一步閱讀 279 習題 280 13 量子計算 282 13.1 量子比特及其性質 283 13.1.1 糾纏 284 13.2 量子邏輯門 287 13.2.1 設計CNOT門 287 13.3 量子并行算法 289 13.4 量子計算機綜述 291 13.5 退相干和量子糾錯 291 13.6 總結 293 進一步閱讀 294 習題 294 附錄A 微擾理論 298 A.1 微擾理論的數學 298 A.2 相近頻率經典振子的相互作用 299 附錄B 靜電能的計算 302 附錄C 磁偶極躍遷 305 附錄D 飽和吸收的線形 307 附錄E Raman躍遷和雙光子躍遷 310 E.1 Raman躍遷 310 E.2 雙光子躍遷 313 附錄F Bose-Einstein凝聚有關統計力學知識 315 F.1 光子的統計力學 315 F.2 Bose-Einstein凝聚 316 F.2.1 諧振阱中的Bose-Einstein凝聚 318 參考文獻 319 索引 326 Contents 1 Early atomic physics 1 1.1 Introduction 1 1.2 Spectrum of atomic hydrogen 1 1.3 Bohr's theory 3 1.4 Relathristic effects 5 1.5 Moseley and the atomic number 7 1.6 Radiative decay 11 1.7 Einstein A and B coefficients 11 1.8 The Zeeman effect 13 1.8.1 Experimental obserxfation of the Zeeman effect 17 1.9 Summary of atomic units 18 Exercises 19 2 The hydrogen atom 22 2.1 The Schrodinger equation 22 2.1.1 Solution of the angular equation 23 2.1.2 Solution of the radial equation 26 2.2 Transitions 29 2.2.1 Selection rules 30 2.2.2 Integration with respect to θ 32 2.2.3 Parity 32 2.3 Fine structure 34 2.3.1 Spin of the electron 35 2.3.2 The spin-orbit interaction 36 2.3.3 The fine structure of hydrogen 38 2.3.4 The Lamb shift 40 2.3.5 Transitions between fine-structure levels 41 Further reading 42 Exercises 42 3 Helium 45 3.1 The ground state of helium 45 3.2 Excited states of helium 46 3.2.1 Spin eigenstates 51 3.2.2 Transitions in helium 52 3.3 Evaluation of the integrals in helium 53 3.3.1 Ground state 53 3.3.2 Excited states:the direct integral 54 3.3.3 Excited states:the exchange integral 55 Further reading 56 Exercises 58 4 The alkalis 60 4.1 Shell structure and the periodic table 60 4.2 The quantum defect 61 4.3 The central-field approximation 64 4.4 Numerical solution of the Schrodinger equation 68 4.4.1 Self-consistent solutions 70 4.5 The spin-orbit interaction:a quantum mechanical approach 71 4.6 Fine structure in the alkalis 73 4.6.1 Relative intensities of fine-structure transitions 74 Further reading 75 Exercises 76 5 The LS-coupling scheme 80 5.1 Fine structure in the /S-coupling scheme 83 5.2 The jj-coupling scheme 84 5.3 Intermediate coupling:the transition between coupling schemes 86 5.4 Selection rules in the /S-coupling scheme 90 5.5 The Zeeman effect 90 5.6 Summary 93 Further reading 94 Exercises 94 6 Hyperfine structure and isotope shift 97 6.1 Hyperfine structure 97 6.1.1 Hyperfine structure for s-electrons 97 6.1.2 Hydrogenmaser 100 6.1.3 Hyperfine structure for l≠0 101 6.1.4 Comparison of hyperfine and fine structures 102 6.2 Isotope shift 105 6.2.1 Mass effects 105 6.2.2 Volume shift 106 6.2.3 Nuclear information from atoms 108 6.3 Zeeman effect and hyperfine structure 108 6.3.1 Zeeman effect of a weak field,μBB<A 109 6.3.2 Zeeman effect of a strong field,μBB>A 110 6.3.3 Intermediate field strength 111 6.4 Measurement of hyperfine structure 112 6.4.1 The atomic-beam technique 114 6.4.2 Atomic clocks 118 Further reading 119 Exercises 120 7 The interaction of atoms with radiation 123 7.1 Setting up the equations 123 7.1.1 Perturbation by an oscillating electric field 124 7.1.2 The rotating-wave approximation 125 7.2 The Einstein B coefficients 126 7.3 Interaction with monochromatic radiation 127 7.3.1 The concepts ofπ-pulses and π/2-pulses 128 7.3.2 The Bloch vector and Bloch sphere 128 7.4 Ramsey fringes 132 7.5 Radiative damping 134 7.5.1 The damping of a classical dipole 135 7.5.2 The optical Bloch equations 137 7.6 The optical absorption cross-section 138 7.6.1 Cross-section for pure radiative broadening 141 7.6.2 The saturation intensity 142 7.6.3 Power broadening 143 7.7 The a.c. Stark effect or light shift 144 7.8 Comment on semiclassical theory 145 7.9 Conclusions 146 Further reading 147 Exercises 148 8 Doppler-free laser spectroscopy 151 8.1 Doppler broadening of spectral lines 151 8.2 The crossed-beam method 153 8.3 Saturated absorption spectroscopy 155 8.3.1 Principle of saturated absorption spectroscopy 156 8.3.2 Cross-over resonances in saturation spectroscopy 159 8.4 Two-photon spectroscopy 163 8.5 Calibration in laser spectroscopy 168 8.5.1 Calibration of the relative frequency 168 8.5.2 Absolute calibration 169 8.5.3 0ptical frequency combs 171 Further reading 175 Exercises 175 9 Laser cooling and trapping 178 9.1 The scattering force 179 9.2 Slowing an atomic beam 182 9.2.1 Chirp cooling 184 9.3 The optical molasses technique 185 9.3.1 The Doppler cooling limit 188 9.4 The magneto-optical trap 190 9.5 Introduction to the dipole force 194 9.6 Theory of the dipole force 197 9.6.1 0pticallattice 201 9.7 The Sisyphus cooling technique 203 9.7.1 General remarks 203 9.7.2 Detailed description of Sisyphus cooling 204 9.7.3 Limit of the Sisyphus cooling mechanism 207 9.8 Raman transitions 208 9.8.1 Velocity selection by Raman transitions 208 9.8.2 Raman cooling 210 9.9 An atomic fountain 211 9.10 Conclusions 213 Exercises 214 10 Magnetic trapping evaporative cooling and Bose-Einstein condensation 218 10.1 Principle of magnetic trapping 218 10.2 Magnetic trapping 220 10.2.1 Confinement in the radial direction 220 10.2.2 Confinement in the axial direction 221 10.3 Evaporative cooling 224 10.4 Bose-Einstein condensation 226 10.5 Bose-Einstein condensation in trapped atomic vapours 228 10.5.1 The scattering length 229 10.6 A Bose-Einstein condensate 234 10.7 Properties of Bose-condensed gases 239 10.7.1 Speed of sound 239 10.7.2 Healinglength 240 10.7.3 The coherence of a Bose-Einstein condensate 240 10.7.4 The atom laser 242 10.8 Conclusions 242 Exercises 243 11 Atom interferometry 246 11.1 Young's double-slit experiment 247 11.2 A diffraction grating for atoms 249 11.3 The three-grating interferometer 251 11.4 Measurement of rotation 251 11.5 The diffraction of atoms by light 253 11.5.1 Interferometry with Raman transitions 255 11.6 Conclusions 257 Further reading 258 Exercises 258 12 Ion traps 259 12.1 The force on ions in an electric field 259 12.2 Earnshaw's theorem 260 12.3 The Paul trap 261 12.3.1 Equilibrium of a ball on a rotating saddle 262 12.3.2 The effective potential in an a.c. field 262 12.3.3 The linear Paul trap 262 12.4 Buffer gas cooling 266 12.5 Laser cooling of trapped ions 267 12.6 Quantum jumps 269 12.7 The Penning trap and the Paul trap 271 12.7.1 The Penning trap 272 12.7.2 Mass spectroscopy of ions 274 12.7.3 The anomalous magnetic moment of the electron 274 12.8 Electron beam ion trap 275 12.9 Resolved sideband cooling 277 12.10 Summary of ion traps 279 Further reading 279 Exercises 280 13 Quantum computing 282 13.1 Qubits and their properties 283 13.1.1 Entanglement 284 13.2 A quantum logic gate 287 13.2.1 Making a CNOT gate 287 13.3 Parallelism in quantum computing 289 13.4 Summary of quantum computers 291 13.5 Decoherence and quantum error correction 291 13.6 Conclusion 293 Further reading 294 Exercises 294 A Appendix A:Perturbation theory 298 A.1 Mathematics of perturbation theory 298 A.2 Interaction of classical oscillators of similar frequencies 299 B Appendix B:The calculation of electrostatic energies 302 C Appendix C:Magnetic dipole transitions 305 D Appendix D:The line shape in saturated absorption spectroscopy 307 E Appendix E:Raman and two-photon transitions 310 E.1 Raman transitions 310 E.2 Two-photon transitions 313 F Appendix F:The statistical mechanics of Bose-Einstein condensation 315 F.1 The statistical mechanics of photons 315 F.2 Bose-Einstein condensation 316 F.2.1 Bose-Einstein condensation in a harmonic trap 318 References 319 Index 326
你還可能感興趣
我要評論
|