《高中數學解題方法與技巧典例分析》共29章,分為上篇和下篇。上篇介紹高中數學解題中重要的22類解題方法及其子方法:每一章以一種數學方法為核心,首先,闡述該數學方法的定義、步驟、使用范圍等;其次,對于高中的典型例題,進行詳細分析和歸納解題經驗;*后,提供若干習題,供讀者進行針對訓練。下篇主要為數學新題賞析:分別對數學作文題、情境題、建模題、探索題、實驗題、思維題、文化題進行點評與賞析。
更多科學出版社服務,請掃碼獲取。
目錄
上篇 解題方法
第1章 數學抽象的方法 3
1.1 符號化 3
1.2 代數化 6
1.3 圖示化 10
第2章 分類與整合的方法 14
2.1 分類與整合 14
2.2 分解與組合 20
2.3 局部與整體 22
第3章 數學歸納法 27
3.1 第一數學歸納法 27
3.2 第二數學歸納法 31
第4章 遞推的方法 35
4.1 累加法 35
4.2 累乘法 38
4.3 不動點法 39
4.4 特征根法 41
4.5 數列求和方法 43
第5章 演繹證明法 47
5.1 綜合法 47
5.2 分析法 50
5.3 比較法 53
5.4 反證法 55
5.5 反例法 57
5.6 放縮法 58
第6章 邏輯推理方法 63
6.1 演繹推理法 63
6.2 集合思想 66
6.3 容斥原理 69
6.4 抽屜原理 71
6.5 計數原理 74
第7章 算法的方法 81
7.1 迭代法 81
7.2 窮舉法 84
第8章 統計方法 89
8.1 抽樣的方法 89
8.2 樣本估計總體的方法 92
8.3 頻率估計概率的方法 98
第9章 概率方法 105
9.1 圖表法 105
9.2 古典概型方法 108
9.3 幾何概型方法 111
9.4 互斥事件與條件概率方法 114
第10章 數形結合法 119
10.1 由“數”化“形” 119
10.2 由“形”化“數” 125
10.3 “數”“形”相生 131
第11章 函數法 137
11.1 待定系數法 137
11.2 分離參數法 142
第12章 方程法 147
12.1 設元法 147
12.2 根的判別式法 153
12.3 點差法 157
第13章 代換法 162
13.1 換元法 162
13.2 配方法 166
13.3 參數法 169
第14章 幾何變換法 175
14.1 幾何變換法 175
14.2 面積法 180
第15章 逐步逼近法 186
15.1 降維法 186
15.2 消元法 191
15.3 逐步調整法 197
15.4 極限法 202
第16章 數學模型法 206
16.1 函數模型 206
16.2 三角模型 210
16.3 數列模型 211
16.4 回歸分析模型 213
16.5 概率分布列模型 219
第17章 特殊化與一般化的方法 225
17.1 特殊化法 225
17.2 一般化法 231
17.3 特殊化VS一般化 235
第18章 聯想法 239
18.1 形似聯想法 239
18.2 類比聯想法 242
18.3 關系聯想法 245
第19章 猜想法 249
19.1 不完全歸納法 249
19.2 類比法 253
19.3 演繹猜想法 257
第20章 構造法 261
20.1 構造輔助圖形 261
20.2 構造輔助式 267
20.3 構造函數法 271
第21章 模式法 278
21.1 變量替換模式法 278
21.2 對稱模式法 281
21.3 同一模式法 285
第22章 逆向思維法 288
22.1 對稱逆向思維法 288
22.2 差異逆向思維法 290
22.3 途徑倒轉逆向思維法 294
下篇 新題賞析
第23章 數學作文題 301
23.1 綜述 301
23.2 新題賞析 305
第24章 數學情境題 316
24.1 綜述 316
24.2 典例分析 318
24.3 針對練習 324
第25章 數學建模題 327
25.1 綜述 327
25.2 典例分析 330
25.3 針對練習 337
第26章 數學探索題 339
26.1 綜述 339
26.2 典例分析 340
26.3 針對練習 343
第27章 數學實驗題 344
27.1 綜述 344
27.2 典例分析 346
27.3 針對練習 348
第28章 數學思維題 350
28.1 綜述 350
28.2 典例分析 350
28.3 針對練習 354
第29章 數學文化題 356
29.1 綜述 356
29.2 典題分析 361
29.3 針對練習 384