吳文俊全集·數(shù)學(xué)機(jī)械化I
定 價(jià):188 元
叢書名:吳文俊全集
- 作者:吳文俊著
- 出版時(shí)間:2019/6/1
- ISBN:9787508855509
- 出 版 社:科學(xué)出版社
- 中圖法分類:O1-53
- 頁(yè)碼:
- 紙張:膠版紙
- 版次:
- 開本:大32開
本卷收錄了吳文俊的Mathematics Mechanization: Mechanical Geometry Theorem-Proving, Mechanical Geometry Problem-Solving and Polynomial Equations-Solving 一書. 本書是圍繞作者命名的數(shù)學(xué)機(jī)械化這一中心議題而陸續(xù)發(fā)表的一系列論文的綜述. 本書試圖以構(gòu)造性與算法化的方式來研究數(shù)學(xué), 使數(shù)學(xué)推理機(jī)械化以至于自動(dòng)化, 由此減輕繁瑣的腦力勞動(dòng).
全書分成三個(gè)部分:*部分考慮數(shù)學(xué)機(jī)械化的發(fā)展歷史, 特別強(qiáng)調(diào)在古代中國(guó)的發(fā)展歷史. 第二部分給出求解多項(xiàng)式方程組所依據(jù)的基本原理與特征列方法. 作為這一方法的基礎(chǔ), 本書還論述了構(gòu)造性代數(shù)幾何中的若干問題. 第三部分給出了特征列方法在幾何定理證明與發(fā)現(xiàn)、機(jī)器人、天體力學(xué)、全局優(yōu)化和計(jì)算機(jī)輔助設(shè)計(jì)等領(lǐng)域中的應(yīng)用.
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
Contents
Chapter 1 Polynomial Equations-Solving in Ancient Times, Mainly in Ancient China 1
1.1 A Brief Description of History of Ancient China and Mathematics Classics in Ancient China 1
1.2 Polynomial Equations-Solving in Ancient China 9
1.3 Polynomial Equations-Solving in Ancient Times beyond China and the Program of Descartes 24
Chapter 2 Historical Development of Geometry Theorem-Proving and Geometry Problem-Solving in Ancient Times 31
2.1 Geometry Theorem-Proving from Euclid to Hilbert 31
2.2 Geometry Theorem-Proving in the Computer Age 43
2.3 Geometry Problem-Solving and Geometry Theorem-Proving in Ancient China 47
Chapter 3 Algebraic Varieties as Zero-Sets and Characteristic-Set Method 65
3.1 Affine and Projective SpaceExtended Points and Specialization 65
3.2 Algebraic Varieties and Zero-Sets 73
3.3 Polsets and Ascending SetsPartial Ordering 85
3.4 Characteristic Set of a Polset and Well-Ordering Principle 93
3.5 Zero-Decomposition Theorems 104
3.6 Variety-Decomposition Theorems 117
Chapter 4 Some Topics in Computer Algebra 130
4.1 Tuples of integers 130
4.2 Well-Arranged Basis of a Polynomial Ideal 138
4.3 Well-Behaved Basis of a Polynomial Idea l45
4.4 Properties of Well-Behaved Basis and its Relationship with Groebner Basis 153
4.5 Factorization and GCD of Multivariate Polynomials over Arbitrary Extension Fields 164
Chapter 5 Some Topics in Computational Algebraic Geometry 175
5.1 Some Important Characters of Algebraic Varieties Complex and Real Varieties 175
5.2 Algebraic Correspondence and Chow Form 190
5.3 Chern Classes and Chern Numbers of an Irreducible Algebraic Variety with Arbitrary Singularities 202
5.4 A Projection Theorem on Quasi-Varieties 211
5.5 Extremal Properties of Real Polynomials 220
Chapter 6 Applications to Polynomial Equations-Solving 234
6.1 Basic Principles of Polynomial Equations-Solving: The Char-Set Method 234
6.2 A Hybrid Method of Polynomial Equations-Solving 244
6.3 Solving of Problems in Enumerative Geometry 256
6.4 Central Configurations in Planet Motions and Vortex Motions 266
6.5 Solving of Inverse Kinematic Equations in Robotics 277
Chapter 7 Appicaltions to Geometry Theorem-Proving 290
7.1 Basic Principles of Mechanical Geometry Theorem-Proving 290
7.2 Mechanical Proving of Geometry Theorems of Hilbertian Type 301
7.3 Mechanical Proving of Geometry Theorems involving Equalities Alone 316
7.4 Mechanical Proving of Geometry Theorems involving Inequalities 327
Chapter 8 Diverse Applications 341
8.1 Applications to Automated Discovering of Unknown Relations and Automated Determination of Geometric Loci 341
8.2 yApplications to Problems involving Inequalities, Optimization Problems, and Non-Linear Programming 353
8.3 Applications to 4-Bar Linkage Design 363