煤巖破壞電磁輻射效應(yīng)及其應(yīng)用
本書(shū)是在大量實(shí)驗(yàn)室實(shí)驗(yàn)和現(xiàn)場(chǎng)實(shí)驗(yàn)的基礎(chǔ)上,結(jié)合信號(hào)處理、損傷力學(xué)、物理化學(xué)和電磁動(dòng)力學(xué)等多學(xué)科的理論研究,比較系統(tǒng)地論述了煤巖破壞電磁輻射的基本規(guī)律,揭示了煤巖等多孔介質(zhì)破壞過(guò)程與電磁輻射信息之間的關(guān)系,建立了三維煤巖力電耦合的損傷力學(xué)模型,對(duì)其中的參數(shù)進(jìn)行了計(jì)算,利用該模型和實(shí)驗(yàn)結(jié)果建立了煤巖動(dòng)力災(zāi)害預(yù)警準(zhǔn)則,并提出了對(duì)煤巖體應(yīng)力的測(cè)試方法;對(duì)煤巖體電磁輻射場(chǎng)進(jìn)行了模擬和驗(yàn)證。對(duì)電磁輻射天線進(jìn)行了模擬分析和選型,對(duì)電磁輻射天線進(jìn)行了測(cè)試分析。同時(shí)開(kāi)發(fā)了礦用高速電磁輻射信號(hào)測(cè)試及分析系統(tǒng),對(duì)煤礦井下工作面煤巖體和干擾和噪聲電磁輻射信號(hào)進(jìn)行了測(cè)試,分析了其頻譜特征;對(duì)煤巖樣及煤礦掘進(jìn)巷道的力電耦合場(chǎng)進(jìn)行了模擬;在煤礦井下對(duì)電磁輻射測(cè)試煤巖體應(yīng)力狀態(tài)和預(yù)測(cè)煤巖動(dòng)力災(zāi)害進(jìn)行了試驗(yàn)研究,驗(yàn)證實(shí)驗(yàn)和理論分析結(jié)果。
更多科學(xué)出版社服務(wù),請(qǐng)掃碼獲取。
第1章緒論1
1.1礦山煤巖動(dòng)力災(zāi)害研究進(jìn)展1
1.1.1煤與瓦斯突出現(xiàn)象1
1.1.2煤與瓦斯突出機(jī)理研究現(xiàn)狀2
1.1.3沖擊礦壓機(jī)理研究進(jìn)展8
1.2煤巖電磁效應(yīng)研究現(xiàn)狀11
1.2.1電磁輻射在地震預(yù)報(bào)方面研究現(xiàn)狀11
1.2.2煤巖電磁輻射機(jī)理研究現(xiàn)狀13
1.2.3煤巖電磁輻射特征研究現(xiàn)狀14
1.2.4電磁輻射預(yù)測(cè)預(yù)報(bào)煤巖災(zāi)害動(dòng)力現(xiàn)象研究現(xiàn)狀15
1.2.5目前電磁輻射需要研究的課題17
1.3本書(shū)主要研究?jī)?nèi)容18
第2章受載煤巖電磁輻射的試驗(yàn)研究19
2.1試驗(yàn)系統(tǒng)、試驗(yàn)方案及試驗(yàn)樣品19
2.1.1試驗(yàn)樣品及其制備方法19
2.1.2試驗(yàn)系統(tǒng)21
2.1.3試驗(yàn)研究?jī)?nèi)容23
2.2單軸壓縮電磁輻射特征24
2.2.1單軸壓縮煤巖混凝土電磁輻射的試驗(yàn)結(jié)果24
2.2.2煤樣受載后快速卸載過(guò)程的電磁輻射時(shí)序試驗(yàn)結(jié)果32
2.2.3煤巖樣沖擊過(guò)程的電磁輻射特征33
2.2.4煤巖摩擦過(guò)程的電磁輻射特征35
2.3組合煤巖破壞過(guò)程的電磁輻射特征38
2.3.1組合煤巖樣單軸壓縮下應(yīng)力分析38
2.3.2組合煤巖的單軸強(qiáng)度條件分析40
2.3.3受載組合煤巖的電磁輻射試驗(yàn)結(jié)果41
2.4煤巖電磁輻射幅值規(guī)律45
2.4.1單軸壓縮煤巖混凝土電磁輻射的幅值變化特征45
2.4.2單軸壓縮組合煤巖電磁輻射的幅值變化特征48
2.4.3沖擊過(guò)程電磁輻射的強(qiáng)度變化特征50
2.4.4摩擦過(guò)程電磁輻射的強(qiáng)度變化特征53
2.5煤巖流變破壞電磁輻射記憶效應(yīng)規(guī)律54
2.5.1循環(huán)加載應(yīng)力的確定54
2.5.2煤巖破壞電磁輻射記憶效應(yīng)試驗(yàn)結(jié)果55
2.5.3瓦斯、水對(duì)煤巖破壞電磁輻射記憶效應(yīng)的影響61
2.6小結(jié)63
第3章含瓦斯煤巖受載破壞電磁輻射試驗(yàn)研究65
3.1試驗(yàn)系統(tǒng)及方案65
3.1.1試驗(yàn)系統(tǒng)65
3.1.2試驗(yàn)方案70
3.2試樣制備及試驗(yàn)準(zhǔn)備71
3.3煤巖力學(xué)特性及電磁輻射特征72
3.3.1煤巖單軸壓縮破壞力學(xué)特性及電磁輻射特征72
3.3.2含瓦斯煤巖單軸壓縮破壞的變形特征79
3.3.3孔隙瓦斯對(duì)煤巖峰值強(qiáng)度的影響81
3.3.4孔隙氣體對(duì)煤巖彈性模量的影響83
3.3.5含瓦斯煤巖受載破壞過(guò)程中的電磁輻射特征84
3.4小結(jié)88
第4章煤巖電磁輻射信號(hào)頻譜特征研究90
4.1組合煤巖電磁輻射試驗(yàn)研究90
4.1.1組合煤巖樣的制作91
4.1.2單一煤體單軸壓縮電磁輻射信號(hào)特征91
4.1.3組合煤巖電磁輻射信號(hào)特征93
4.2煤巖變形破壞電磁輻射信號(hào)頻譜分析95
4.2.1煤體單軸壓縮電磁輻射信號(hào)頻譜分析95
4.2.2組合煤巖變形破壞電磁輻射信號(hào)頻譜分析101
4.2.3傅里葉譜與功率譜的對(duì)比分析112
4.3基于小波變換的電磁輻射信號(hào)特征分析112
4.3.1基于小波的電磁輻射信號(hào)特征分析的基本方法112
4.3.2煤體單軸壓縮電磁輻射信號(hào)小波特征頻譜分析113
4.3.3組合煤巖電磁輻射信號(hào)小波特征頻譜分析122
4.3.4頻譜分析與小波分析的結(jié)果比較137
4.4基于希爾伯特黃變換(HHT)電磁輻射頻譜分析137
4.4.1HHT分析法137
4.4.2電磁輻射信號(hào)的HHT分析142
4.5小結(jié)158
第5章煤巖電磁輻射信號(hào)噪聲頻譜特征及抑制研究159
5.1煤巖電磁輻射信號(hào)的傳播途徑159
5.2煤巖電磁輻射信號(hào)采集過(guò)程噪聲分析160
5.2.1電磁輻射信號(hào)實(shí)驗(yàn)室采集過(guò)程中噪聲來(lái)源160
5.2.2電磁輻射信號(hào)現(xiàn)場(chǎng)采集過(guò)程中噪聲來(lái)源161
5.3煤巖電磁輻射監(jiān)測(cè)抗干擾技術(shù)161
5.3.1屏蔽技術(shù)161
5.3.2濾波技術(shù)162
5.4電磁輻射信號(hào)的小波降噪方法163
5.4.1小波變換降噪模型和降噪過(guò)程163
5.4.2小波變換降噪閾值選取與確定165
5.5基于小波理論的電磁輻射信號(hào)降噪167
5.5.1單一煤樣電磁輻射信號(hào)的小波去噪167
5.5.2組合煤巖電磁輻射信號(hào)的小波去噪171
5.6工作面電磁輻射信號(hào)的噪聲抑制技術(shù)177
5.6.1不同噪聲源的電磁輻射信號(hào)頻譜特征177
5.6.2工作面電磁輻射信號(hào)去噪185
5.7小結(jié)190
第6章煤巖變形破壞電磁輻射的非線性預(yù)測(cè)方法192
6.1煤巖破裂過(guò)程聲發(fā)射和電磁輻射信號(hào)的混沌特征192
6.1.1關(guān)聯(lián)維數(shù)及其計(jì)算192
6.1.2聲發(fā)射和電磁輻射信號(hào)的混沌特征194
6.2煤巖變形破壞電磁輻射的神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法研究195
6.3自適應(yīng)BP神經(jīng)網(wǎng)絡(luò)的基本原理及實(shí)現(xiàn)步驟196
6.4煤巖變形破裂電磁輻射自適應(yīng)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)原理198
6.4.1電磁輻射參數(shù)時(shí)間序列維數(shù)的選定198
6.4.2自適應(yīng)神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)原理198
6.5自適應(yīng)神經(jīng)網(wǎng)絡(luò)在煤巖電磁輻射信號(hào)預(yù)測(cè)中的應(yīng)用199
6.6小結(jié)201
第7章煤巖電磁輻射接收天線特征參數(shù)及模擬研究202
7.1引言202
7.1.1天線定義202
7.1.2天線基本參數(shù)204
7.1.3天線極化波209
7.2煤巖電磁輻射接收天線特征參數(shù)及測(cè)量方法210
7.2.1電磁輻射接收天線設(shè)計(jì)原則211
7.2.2電磁輻射接收天線基本特性213
7.2.3電磁輻射接收天線參數(shù)測(cè)量216
7.3煤巖電磁輻射接收天線模擬技術(shù)220
7.3.1HFSS軟件及其相關(guān)技術(shù)定義220
7.3.2煤巖電磁輻射場(chǎng)仿真研究222
7.3.3電磁輻射接收天線仿真研究227
7.4小結(jié)237
第8章煤巖力電耦合模型及動(dòng)力災(zāi)害預(yù)警準(zhǔn)則239
8.1引言239
8.1.1損傷力學(xué)及其發(fā)展239
8.1.2煤巖強(qiáng)度的統(tǒng)計(jì)損傷理論241
8.1.3煤巖材料的損傷力學(xué)模型241
8.1.4基于Weibull分布的煤巖強(qiáng)度統(tǒng)計(jì)損傷模型242
8.1.5基于正態(tài)分布的煤巖強(qiáng)度統(tǒng)計(jì)損傷模型244
8.1.6三維煤巖力學(xué)損傷本構(gòu)關(guān)系245
8.2煤巖力電耦合的損傷力學(xué)模型247
8.2.1基于電磁輻射脈沖數(shù)的一維煤巖力電耦合模型248
8.2.2基于電磁輻射脈沖數(shù)的三維煤巖力電耦合模型249
8.2.3基于電磁輻射強(qiáng)度的煤巖力電耦合模型252
8.3力電耦合模型相關(guān)參數(shù)計(jì)算253
8.3.1力電耦合模型的相關(guān)參數(shù)意義253
8.3.2力電耦合模型參數(shù)的計(jì)算方法253
8.3.3計(jì)算結(jié)果253
8.4煤巖力電耦合模型的應(yīng)用255
8.4.1煤巖均勻性對(duì)電磁輻射的影響255
8.4.2不同圍壓對(duì)煤巖電磁輻射的影響256
8.4.3單軸壓縮煤巖樣突然卸載時(shí)的電磁輻射特征257
8.4.4循環(huán)加載過(guò)程的電磁輻射特征258
8.5礦山煤巖電磁輻射預(yù)警準(zhǔn)則259
8.5.1電磁輻射監(jiān)測(cè)預(yù)警指標(biāo)259
8.5.2煤巖動(dòng)力災(zāi)害電磁輻射預(yù)警準(zhǔn)則259
8.5.3預(yù)警臨界值及動(dòng)態(tài)趨勢(shì)系數(shù)的確定261
8.5.4煤巖動(dòng)力災(zāi)害電磁輻射預(yù)警技術(shù)262
8.6小結(jié)263
第9章電磁輻射監(jiān)測(cè)煤巖體應(yīng)力狀態(tài)技術(shù)及應(yīng)用264
9.1電磁輻射評(píng)價(jià)煤巖體應(yīng)力狀態(tài)技術(shù)原理264
9.2煤巖體前方應(yīng)力區(qū)域電磁輻射評(píng)價(jià)技術(shù)268
9.2.1掘進(jìn)工作面應(yīng)力狀態(tài)電磁輻射測(cè)試269
9.2.2回采工作面前方應(yīng)力狀態(tài)電磁輻射測(cè)試271
9.3采掘應(yīng)力場(chǎng)電磁輻射監(jiān)測(cè)評(píng)價(jià)技術(shù)274
9.3.1掘進(jìn)巷兩幫應(yīng)力狀態(tài)電磁輻射監(jiān)測(cè)技術(shù)274
9.3.2回風(fēng)巷煤壁應(yīng)力狀態(tài)電磁輻射監(jiān)測(cè)技術(shù)277
9.4回采工作面周期來(lái)壓電磁輻射監(jiān)測(cè)技術(shù)278
9.4.1回采工作面前方非接觸式電磁輻射測(cè)試結(jié)果278
9.4.2回采工作面非接觸式電磁輻射測(cè)試結(jié)果281
9.4.3回采工作面頂板周期來(lái)壓鉆孔電磁輻射測(cè)試結(jié)果282
9.5小結(jié)285
第10章煤巖電磁輻射監(jiān)測(cè)技術(shù)的應(yīng)用研究286
10.1電磁輻射監(jiān)測(cè)技術(shù)286
10.2電磁輻射測(cè)試裝備287
10.2.1 KBD5便攜式電磁輻射監(jiān)測(cè)儀的組成及功能287
10.2.2 KBD7煤巖動(dòng)力災(zāi)害非接觸電磁輻射監(jiān)測(cè)儀292
10.3電磁輻射監(jiān)測(cè)技術(shù)在煤與瓦斯突出預(yù)測(cè)中的應(yīng)用297
10.3.1 3248運(yùn)輸聯(lián)巷基本情況297
10.3.2 KBD7電磁輻射監(jiān)測(cè)儀測(cè)試與分析298
10.3.3電磁輻射的影響因素分析307
10.3.4電磁輻射規(guī)律分析與實(shí)施步驟317
10.4電磁輻射監(jiān)測(cè)技術(shù)在沖擊礦壓預(yù)測(cè)中的應(yīng)用317
10.4.1沖擊礦壓發(fā)生前后的電磁輻射變化規(guī)律319
10.4.2電磁輻射與微震震級(jí)間的關(guān)系319
10.5煤巖電磁輻射監(jiān)測(cè)技術(shù)發(fā)展趨勢(shì)320
10.5.1“智慧線”通信技術(shù)320
10.5.2“智慧線”技術(shù)在煤巖電磁輻射監(jiān)測(cè)中的應(yīng)用322
10.6小結(jié)324
參考文獻(xiàn)325
Contents
Preface
Chapter 1Introduction1
1.1Advances in coal or rock dynamic disasters research1
1.1.1The phenomenon of coal and gas outburst1
1.1.2The review of mechanism of coal and gas outburst 2
1.1.3The review of mechanism of rock burst8
1.2The situation of the electromagnetic emission of coal or rock11
1.2.1The review of electromagnetic emission (EME) in earthquake prediction11
1.2.2The review of EME mechanism of coal or rock13
1.2.3The review of EME characteristics of coal or rock14
1.2.4The review of EME in prediction of coal or rock dynamic disasters15
1.2.5The research topic of EME17
1.3The research contents18
Chapter 2EME experimental study of coal or rock under load19
2.1Experimental system and test plan19
2.1.1Test samples and their preparation method19
2.1.2Experimental system21
2.1.3Experimental research contents23
2.2Characteristics of EME under uniaxial compression24
2.2.1EME experimental results of coal, rock and concrete under uniaxial compressive24
2.2.2EME experimental results of coal during quick uploading32
2.2.3EME characteristics of coal or rock in the impact process33
2.2.4EME characteristics of coal or rock in the friction process35
2.3EME characteristics of coalrock combination fracture38
2.3.1Stress analysis of coalrock combination under uniaxial compression38
2.3.2Strength analysis of coalrock combination under uniaxial compression40
2.3.3EME experimental results of coalrock combination under load41
2.4EME amplitude law of coal or rock45
2.4.1EME amplitude variation of coal, rock and concrete under uniaxial compressive45
2.4.2EME amplitude variation of coalrock combination under uniaxial compressive48
2.4.3EME intensity variation in the impact process50
2.4.4EME intensity variation in the friction process53
2.5EME memory effect law of coal or rock rheological fracture54
2.5.1Cyclic loading stress54
2.5.2EME memory effect experimental results of coal or rock fracture55
2.5.3Influence of gas and water on EME memory effect of coal or rock fracture61
2.6Summary63
Chapter 3EME experimental study of coal or rock containing gas fracture65
3.1Experimental systems and test plan65
3.1.1Experimental system65
3.1.2Experimental plan70
3.2Preparation of samples and experimental71
3.3Mechanical properties and EME characteristics of coal or rock72
3.3.1Mechanical properties and EME characteristics of coal or rock under uniaxial compression72
3.3.2Deformation characteristics of coal containing gas under uniaxial compressive79
3.3.3Influence of pore gas on the peak intensity of coal or rock 81
3.3.4Influence of pore gas on the elastic modulus of coal or rock 83
3.3.5EME characteristics of coal or rock containing gas fracture84
3.4Summary88
Chapter 4EME spectral characteristics of coal or rock90
4.1EME experimental study of coalrock combination90
4.1.1Preparation of coalrock combination samples90
4.1.2EME characteristics of coal under uniaxial compression91
4.1.3EME characteristics of coalrock combination fracture93
4.2EME spectrum analysis of coal or rock fracture95
4.2.1EME spectrum analysis of coal under uniaxial compression95
4.2.2EME spectrum analysis of coalrock combination fracture101
4.2.3Comparison between the Fourier spectrum and power spectrum112
4.3Analysis of EME based on wavelet transform 112
4.3.1Basic analysis method of EME based on wavelet transform112
4.3.2EME wavelet spectrum analysis of coal under uniaxial compression113
4.3.3EME wavelet spectrum analysis of coalrock combination fracture122
4.3.4Comparison between the spectral analysis and wavelet analysis137
4.4EME spectrum analysis based on HilbertHuang Transform (HHT)137
4.4.1HHT Method137
4.4.2HHT analysis of EME142
4.5Summary158
Chapter 5Noise spectral characteristics in EME of coal or rock and its suppression159
5.1EME pathways of coal or rock159
5.2Noise analysis in EME of coal or rock during signal acquisition process 160
5.2.1Noise sources in EME during signal acquisition process at the laboratory160
5.2.2Noise sources in EME during signal acquisition process on site161
5.3Jamming technology of EME monitoring of coal or rock161
5.3.1Shielding technology161
5.3.2Filtering Technology162
5.4Denoising method of EME using wavelet transform163
5.4.1Denoising mode and process using wavelet transform163
5.4.2Threshold of denoising using wavelet transform165
5.5Denoising of EME based on wavelet theory167
5.5.1EME denoising of coal using wavelet transform167
5.5.2EME denoising of coalrock combination using wavelet transform171
5.6Denoising technology of EME in coal face177
5.6.1EME spectral characteristics of different noise sources177
5.6.2Denoising of EME in coal face185
5.7Summary190
Chapter 6EME nonlinear prediction method of coal or rock fracture192
6.1Chaos characteristics of acoustic emission and EME of coal or rock fracture192
6.1.1Correlation dimension and its calculation192
6.1.2Chaos characteristics of acoustic emission and EME194
6.2EME neural network prediction method of coal or rock fracture195
6.3The basic principle and implementation steps of adaptive BP neural network196
6.4Principles of adaptive neural network prediction for EME of coal or rock fracture198
6.4.1Time series dimension of EME parameters198
6.4.2Principles of adaptive neural network prediction198
6.5Applications of adaptive neural network prediction in EME of coal or rock199
6.6Summary201
Chapter 7Characteristic parameters and simulation study of EME receiving antenna of coal or rock202
7.1Introduction202
7.1.1Antenna definition202
7.1.2The basic parameters of antenna204
7.1.3Antenna polarized wave209
7.2Characteristic parameters and measurement of EME receiving antenna of coal or rock210
7.2.1Design principles of EME receiving antenna211
7.2.2Basic characteristics of EME receiving antenna213
7.2.3Parameter measurement of EME receiving antenna216
7.3Simulation technology of EME receiving antenna of coal or rock220
7.3.1HFSS software and its technical definition220
7.3.2EME filed simulation study of coal or rock222
7.3.3Simulation study of EME receiving antenna227
7.4Summary237
Chapter 8Electromechanical coupling model for EME of coal or rock and guidelines of disaster warning239
8.1Introduction239
8.1.1Damage mechanics and its development239
8.1.2Statistical damage theory of coal or rock strength241
8.1.3Damage mechanics model of coal or rock materials241
8.1.4Statistical damage model of coal or rock strength based on the Weibull distribution242
8.1.5Statistical damage theory of coal or rock strength based on normal distribution244
8.1.6Damage Mechanical model of three dimensional coal or rock245
8.2Damage mechanics model of coal or rock based on electromechanical coupling model247
8.2.1D electromechanical coupling model of coal or rock based on the pulses of EME248
8.2.2D electromechanical coupling model of coal or rock based on the pulses of EME249
8.2.3Electromechanical coupling model of coal or rock based on the intensity of EME252
8.3Parameters calculation of electromechanical coupling model 253
8.3.1Parameters significance of electromechanical coupling model253
8.3.2Parameters calculation253
8.3.3Calculation results253
8.4Application of electromechanical coupling model of coal or rock255
8.4.1Influence of the uniformity of coal or rock on the EME255
8.4.2Influence of different confining pressure on the EME of coal or rock256
8.4.3Characteristics of EME when uniaxial compression sudden unloading of coal or rock257
8.4.4Characteristics of EME during cyclic loading258
8.5EME warning criteria of coal or rock259
8.5.1Early warning indicators of EME monitoring259
8.5.2EME warning criteria of coal or rock dynamic disasters259
8.5.3Warning thresholds and dynamic trends coefficients259
8.5.4EME warning technology of coal or rock dynamic disasters 262
8.6Summary263
Chapter 9EME monitoring technology of coal or rock stress and applications264
9.1Technical principles of coal or rock stress evaluation by EME264
9.2EME monitoring technology of stress region in front of coal or rock268
9.2.1EME monitoring of stress state on the excavation face269
9.2.2EME monitoring of stress state in front of working face271
9.3EME monitoring technology of mining stress field274
9.3.1EME monitoring technology of stress state in cutting roadway274
9.3.2EME monitoring technology of stress state in return airway277
9.4EME monitoring technology of cycle pressure in working face278
9.4.1Noncontact monitoring results of EME in front of working face278
9.4.2Noncontact monitoring results of EME in working face281
9.4.3EME monitoring study of periodic roof pressure in working face282
9.5Summary285
Chapter 10Field applications of EME monitoring technology of coal or rock286
10.1EME monitoring technology286
10.2EME monitoring equipment287
10.2.1KBD5 portable EME monitor287
10.2.2KBD7 noncontact EME monitor292
10.3EME monitoring technology in coal and gas outburst prediction297
10.3.1Basic situation of transportation lane297
10.3.2EME test and analysis using KBD7 monitor298
10.3.3Factors analysis of EME307
10.3.4Law analysis and implementation steps of EME313
10.4EME monitoring technology in rock burst prediction317
10.4.1Variation of EME before and after rock burst occurred 317
10.4.2Relationship between EME and magnitude of microseismic319
10.5Trends of EME monitoring technology320
10.5.1“The Smartcable” communication technology320
10.5.2EME monitoring technology based on “The Smartcable”322
10.6Summary324
References325