本書是Boston大學舉辦的數論和代數會議的講義擴張而成。書中介紹和擴充講述了Wiles的許多觀點和技巧,并闡述了他的結果是如何與Ribets定理、Frey,Serre思想的結合,來證明費馬最后定理。從一個完整的證明開始,緊接著用一些章節(jié)介紹了雙曲線、模函數、曲線、伽羅瓦上同調和有限群的基本概念。表示理論是整個證明的核心,在一章有關自同構表示論和Langlands-Tunnell定理給出,緊隨其后深度介紹Serres猜想、伽羅瓦變形、一般變形環(huán)、Hacke代數。本書以回顧和展望作為結束,既反映了這個問題的歷史,又將Wiles定理放在了一個更加一般的Diophantine背景,給出了預期應用。數學專業(yè)的學生和老師將會發(fā)現(xiàn)這本書是一部很難得參考書。
Preface
Contributors
Schedule of Lectures
Introduction
CHAPTER Ⅰ
An Overview of the Proof of Fermat's Last Theorem GLENN STEVENS
A remarkable elliptic curve
Galois representations
A remarkable Galois representation
Modular Galois representations
The Modularity Conjecture and Wiles's Theorem
The proof of Fermat's Last Theorem
The proof of Wiles's Theorem
References
CHAPTER Ⅱ
A Survey of the Arithmetic Theory of Elliptic Curves JOSEPH H. SILVERMAN
Basic definitions
The group law
Singular cubics
Isogenies
The endomorphism ring
Torsion points
Galois representations attached to E
The Weil pairing
Elliptic curves over finite fields
Elliptic curves over C and elliptic functions
The formal group of an elliptic curve
Elliptic curves over local fields
The Selmer and Shafarevich-Tate groups
Discriminants, conductors, and L-series
Duality theory
Rational torsion and the image of Galois
Tate curves
Heights and descent
The conjecture of Birch and Swinnerton-Dyer
Complex multiplication
Integral points
References
CHAPTER Ⅲ
Modular Curvcs, Hecke Correspondences, and L-Functions DAVID E.ROHRLICH
Modular curves
The Hcckc corrospondences
L-functions
Rcfcrcnccs
CHAPTER Ⅳ
……