數(shù)學(xué)分析(英文版·原書第2版·典藏版)
定 價(jià):139 元
叢書名:華章數(shù)學(xué)原版精品系列
- 作者:[美]湯姆·M.阿波斯托爾(TomM.Apostol)著
- 出版時(shí)間:2022/6/1
- ISBN:9787111706106
- 出 版 社:機(jī)械工業(yè)出版社
- 中圖法分類:O17
- 頁碼:508
- 紙張:膠版紙
- 版次:1
- 開本:16開
本書是在“高等微積分”的水平上闡述數(shù)學(xué)分析中的論題,提供了從初等微積分向?qū)嵶兒瘮?shù)論及復(fù)變函數(shù)論中的高等課程的一種過渡,而且介紹了某些涉及現(xiàn)代分析的抽象理論.內(nèi)容既涵蓋我國大學(xué)的數(shù)學(xué)分析課程的內(nèi)容,又包括勒貝格積分及柯西定理和留數(shù)計(jì)算等.本書條理清晰,內(nèi)容精練,言簡意賅,適合作為高等院校本科生數(shù)學(xué)分析課程的教材.
適讀人群 :數(shù)學(xué)系本科生
本書是一部現(xiàn)代數(shù)學(xué)名著。自20世紀(jì)70年代面世以來,一直受到西方學(xué)術(shù)界、教育界的廣泛推崇,被許多知名大學(xué)指定為教材。
本書是在“高等微積分”的水平上闡述數(shù)學(xué)分析中的論題,提供了從初等微積分向?qū)嵶兒瘮?shù)論及復(fù)變函數(shù)論中的高等課程的一種過渡,而且介紹了某些涉及現(xiàn)代分析的抽象理論.內(nèi)容既涵蓋我國大學(xué)的數(shù)學(xué)分析課程的內(nèi)容,又包括勒貝格積分及柯西定理和留數(shù)計(jì)算等.
本書條理清晰,內(nèi)容精練,言簡意賅,適合作為高等院校本科生數(shù)學(xué)分析課程的教材.
從目錄可以看出,本書是在“高等微積分”的水平上闡述數(shù)學(xué)分析中的論題.編寫本書的目的在于展現(xiàn)這門學(xué)科,所以要求敘述忠實(shí)于原貌、精確嚴(yán)密,包含最進(jìn)展,同時(shí)又不過于學(xué)究氣.本書提供了從初等微積分向?qū)嵶兒瘮?shù)論及復(fù)變函數(shù)論等高等課程的一種過渡,并介紹了一些涉及現(xiàn)代分析的抽象理論.
與第1版相比,第2版的主要更新表現(xiàn)在以下方面:在考慮一般的度量空間以及n維歐氏空間時(shí)介紹點(diǎn)集拓?fù);增加了關(guān)于勒貝格積分的兩章;刪去了曲線積分、向量分析和曲面積分方面的內(nèi)容;重排了某些章的順序;完全重寫了很多節(jié);增加了若干新的練習(xí).
勒貝格積分由Riesz-Nagy方法引入,此方法直接著眼于函數(shù)及其積分,而不依賴于測度論.為了適應(yīng)大學(xué)本科水平的教學(xué),在介紹勒貝格積分時(shí),進(jìn)行了簡化、延伸和調(diào)整.
本書第1版曾被用于從本科一年級(jí)到研究生一年級(jí)各種水平的數(shù)學(xué)課程,既用作教科書,又用作補(bǔ)充參考書.第2版保持了這種靈活性.例如,第1章至第5章及第12章和第13章可用于單變量或多變量函數(shù)的微分學(xué)課程,第6章至第11章及第14章和第15章可用于積分論的課程.也可以按其他方式進(jìn)行多種組合,教師則可以參考下一頁的圖示根據(jù)自己的需要,選擇適當(dāng)?shù)恼鹿?jié),圖中顯示了各章之間的邏輯依賴關(guān)系.
我要向不厭其煩地就第1版寫信給我的許多人表示感謝,他們的評(píng)論和建議有助于我進(jìn)行修訂.特別要感謝Charalambos Aliprantis博士,他細(xì)心地閱讀了第2版的全部手稿并提出了許多有益的建議,還提供了一些新的練習(xí).最后,向加州理工學(xué)院的學(xué)生們表示由衷的感謝,是他們對數(shù)學(xué)的熱情激發(fā)了我編著此書.
T. M. A.
1973年9月于帕薩迪納
湯姆·M. 阿波斯托爾(Tom M. Apostol)是加州理工學(xué)院數(shù)學(xué)系榮譽(yù)教授。他于1946年在華盛頓大學(xué)西雅圖分校獲得數(shù)學(xué)碩士學(xué)位,于1948年在加州大學(xué)伯克利分校獲得數(shù)學(xué)博士學(xué)位。
Chapter 1 The Real and Complex Number Systems
1.1 Introduction 1
1.2 The field axioms . 1
1.3 The order axioms 2
1.4 Geometric representation of real numbers 3
1.5 Intervals 3
1.6 Integers 4
1.7 The unique factorization theorem for integers 4
1.8 Rational numbers 6
1.9 Irrational numbers 7
1.10 Upper bounds, maximum element, least upper bound(supremum) . 8
1.11 The completeness axiom 9
1.12 Some properties of the supremum 9
1.13 Properties of the integers deduced from the completeness axiom 10
1.14 The Archimedean property of the real-number system . 10
1.15 Rational numbers with finite decimal representation 11
1.16 Finite decimal approximations to real numbers 11
1.17 Infinite decimal representation of real numbers . 12
1.18 Absolute values and the triangle inequality 12
1.19 The Cauchy—Schwarz inequality 13
1.20 Plus and minus infinity and the extended real number system R* 14
1.21 Complex numbers 15
1.22 Geometric representation of complex numbers 17
1.23 The imaginary unit 18
1.24 Absolute value of a complex number . 18
1.25 Impossibility of ordering the complex numbers . 19
1.26 Complex exponentials 19
1.27 Further properties of complex exponentials 20
1.28 The argument of a complex number . 20
1.29 Integral powers and roots of complex numbers . 21
1.30 Complex logarithms 22
1.31 Complex powers 23
1.32 Complex sines and cosines 24
1.33 Infinity and the extended complex plane C* 24
Exercises 25
Chapter 2 Some Basic Notions of Set Theory
2.1 Introductiou 32
2.2 Notations 32
2.3 Ordered pairs 33
2.4 Cartesian product of two sets 33
2.5 Relations and functions 34
2.6 Further terminology concerning functions 35
2.7 One-to-one functions and inverses 36
2.8 Composite functions 37
2.9 Sequences. 38
2.10 Similar (equinumerous) sets 38
2.11 Finite and infinite sets 39
2.12 Countable and uncountable sets 39
2.13 Uncountability of the real-number system 42
2.14 Set algebra 43
2.15 Countable collections of countable sets
Exercises 43
Chapter 3 Elements of Point Set Topology
3.1 Introduction 47
3.2 Euclidean space R't 47
3.3 Open balls and open sets in R* 49
3.4 The structure of open sets in RH 50
3.5 Closed sets . 52
3.6 Adhèrent points. Accumulation points 52
3.7 Closed sets and adhèrent points 53
3.8 The Bolzano—Weierstrass theorem 54
3.9 The Cantor intersection theorem 56
3.10 The Lindel?f covering theorem 56
3.11 The Heine—Borel covering theorem 58
3.12 Compactness in R‘ 59
3.13 Metric spaces 60
3.14 Point set topology in metric spaces 61
3.15 Compact subsets of a metric space 63
3.16 Boundary of a set
Exercises 65
Chaqter 4 Limits and Continuity
4.1 Introduction 70
4.2 Convergent sequences in a metric space 72
4.3 Cauchy sequences 74
4.4 Complete metric spaces . 74
4.5 Limit of a function 76
4.6 Limits of complex-valued functions
4.7 Limits of vector-valued functions 77
4.8 Continuous functions 78
4.9 Continuity of composite functions.
4.10 Continuous complex-valued and vector-valued functions 79
4.11 Examples of continuous functions 80
4.12 Continuity and inverse images of open or closed sets 80
4.13 Functions continuous on compact sets 81
4.14 Topolo$ical mappings (homeomorphisms) 82
4.15 Bolzano’s theorem 84
4.16 Connectedness 84
4.17 Components of a metric space . 86
4.18 Arcwise connectedness 87
4.19 Uniform continuity 88
4.20 Uniform continuity and compact sets 90
4.21 Fixed-point theorem for contractions 91
4.22 Discontinuities of real-valued functions 92
4.23 Monotonic functions 94
Exercises 95
Chapter 5 DerJvatives
5.1Introduction 104
5.2 Definition of derivative .104
5.3 Derivatives and continuity 105
5.4 Algebra of derivatives106
5.5 The chain rule 106
5.6 One-si