安德里斯編著的《用于邊界值問(wèn)題的拓?fù)洳粍?dòng)點(diǎn)原理》旨在系統(tǒng)介紹凸空間上的單值和多值映射的拓?fù)洳粍?dòng)點(diǎn)理論。內(nèi)容包括常微分方程的邊界值問(wèn)題和在動(dòng)力系統(tǒng)中的應(yīng)用,是第一本用非度量空間講述拓?fù)洳粍?dòng)點(diǎn)理論的專著。盡管理論上的講述和書(shū)中精選的應(yīng)用實(shí)例相結(jié)合,但本身具有很強(qiáng)的獨(dú)立性。本書(shū)利用不動(dòng)點(diǎn)理論求微分方程的解,獨(dú)具特色。目次:理論背景;一般原理;在微分方程中的應(yīng)用。
preface
scheme for the relationship of singlc sections
chapter Ⅰ theoretical background
Ⅰ.1.structure of locally convex spaces
Ⅰ.2.anr-spaces and ar-spaces
Ⅰ.3.multivadued mappings and their selections
Ⅰ.4.admissible mappings
Ⅰ.5.special classes of admissible mappings
Ⅰ.6.lefschetz fixed point theorem for admissible mappings
Ⅰ.7.lefschetz fixed point theorem for condensing mappings
Ⅰ.8.fixed point index and topological degree for admissible maps inlocally convex spaces
Ⅰ.9.noncon/pact case
Ⅰ.10.nielsen number
Ⅰ.11.nielsen number; noncompact case
Ⅰ.12.remarks and comments
preface
scheme for the relationship of singlc sections
chapter Ⅰ theoretical background
Ⅰ.1.structure of locally convex spaces
Ⅰ.2.anr-spaces and ar-spaces
Ⅰ.3.multivadued mappings and their selections
Ⅰ.4.admissible mappings
Ⅰ.5.special classes of admissible mappings
Ⅰ.6.lefschetz fixed point theorem for admissible mappings
Ⅰ.7.lefschetz fixed point theorem for condensing mappings
Ⅰ.8.fixed point index and topological degree for admissible maps inlocally convex spaces
Ⅰ.9.noncon/pact case
Ⅰ.10.nielsen number
Ⅰ.11.nielsen number; noncompact case
Ⅰ.12.remarks and comments
chapter Ⅱ general principles
Ⅱ.1.topological structure of fixed point sets:aronszajn-browder-gupta-type results
Ⅱ.2.topological structure of fixed point sets: inverse limitmethod
Ⅱ.3.topological dimension of fixed point sets
Ⅱ.4.topological essentiality
Ⅱ.5.relative theories of lefschetz and nielsen
Ⅱ.6.periodic point principles
Ⅱ.7.fixed point index for condensing maps
Ⅱ.8.approximation methods in the fixed point theory of multivaluedmappings
Ⅱ.9.topological degree defined by means of approximationmethods
Ⅱ.10.continuation principles based on a fixed point index
Ⅱ.11.continuation principles based on a coincidence index
Ⅱ.12.remarks and comments
chapter Ⅲ application to differential equations andinclusions
Ⅲ.1.topological approach to differential equations andinclusions
Ⅲ.2.topological structure of solution sets: initial valueproblems
Ⅲ.3.topological structure of solution sets: boundary valueproblems
Ⅲ.4.poincare operators
Ⅲ.5.existence results
Ⅲ.6.multiplicity results
Ⅲ.7.wakewski-type results
Ⅲ.8.bounding and guiding functions approach
Ⅲ.9.infinitely many subharmonics
Ⅲ.10.almost-periodic problems
Ⅲ.11.some further applications
Ⅲ.12.remarks and comments
appendices
a.1.almost-periodic single-valued and multivalued functions
a.2.derivo-periodic single-valued and multivalued functions
a.3.fractals and multivalued fractals
references
index