矩陣論引論(introduction to matrix theory)(英文版)
定 價(jià):42 元
叢書(shū)名:南京航空航天大學(xué)研究生系列精品教材
- 作者:Zhengsheng Wang
- 出版時(shí)間:2015/1/1
- ISBN:9787030453945
- 出 版 社:科學(xué)出版社
- 中圖法分類:O151.21
- 頁(yè)碼:148
- 紙張:膠版紙
- 版次:1
- 開(kāi)本:16K
讀者對(duì)象:本書(shū)可作為理工科院校碩士生、博士生以及高年級(jí)本科生的課程教材, 特別是雙語(yǔ)課程, 更可作為理工科留學(xué)生 (博士生、碩士生和高年級(jí)本科生) 的課程教材, 也可作為有關(guān)專業(yè)教師和工程技術(shù)人員的參考書(shū)
Chapter 1
Review and Miscellanea: Basic Concepts in Linear Algebra
We brie°y review, mostly without proof, the basic concepts and results taught in an ele- mentary linear algebra course.
1.1 Matrix Concept and Special Matrices
The term of matrix was ˉrst introduced by the British mathematician James Joseph Sylvester in 1890. The word \matrix" is derived from the Indo-European root mater, mean- ing \mother". Matrices are indeed the core of linear algebra.
Firstly, we see the following two numbers tables(Table 1.1 and Table 1.2) in real life. Table 1.1 The price table of four kinds of cans in three supermarkets
We can write it in brief in the form
Table 1.2 The distances of three cities in China (km)
We can write it in the brief form
It is symmetric.
Deˉnition 1.1.1(Matrix) An array of numbers (or symbols) in m rows and n columns
is called an m £ n matrix.
The notation
or
Usually, we denote