劉彥佩編著的《代數(shù)圖基礎(chǔ)》是中國(guó)科學(xué)技術(shù)大學(xué)校友文庫(kù)之一。本書以圖的代數(shù)表示為起點(diǎn),著重于多面形、曲面、嵌入和地圖等對(duì)象,用一個(gè)統(tǒng)一的理論框架,揭示在更具普遍性的組合乃至代數(shù)構(gòu)形中,可通過(guò)局部對(duì)稱性反映全局性質(zhì)。特別是通過(guò)多項(xiàng)式型的不變量刻畫這些構(gòu)形在不同拓?fù)、組合和代數(shù)變換下的分類。同時(shí),也提供這些分類在算法上的實(shí)現(xiàn)和復(fù)雜性分析。
劉彥佩編著的《代數(shù)圖基礎(chǔ)》以圖的代數(shù)表示為起點(diǎn),著重于多面形、曲面、嵌入和地圖等對(duì)象,用一個(gè)統(tǒng)一的理論框架,揭示在更具普遍性的組 合乃至代數(shù)構(gòu)形中,可通過(guò)局部對(duì)稱性反映全局性質(zhì)。特別是通過(guò)多項(xiàng)式型的不變量刻畫這些構(gòu)形在不同拓?fù)洹⒔M合和代數(shù)變換下的分類。同時(shí),也提 供這些分類在算法上的實(shí)現(xiàn)和復(fù)雜性分析。雖然本書中的結(jié)論多以作者的前期工作為基...
Preface to the USTC Alumni’S Series
Preface
Chapter 1 Abstract Graphs
1.1 Graphs and Networks
1.2 Surfaces
1.3 Embeddings
1.4 Abstract Representation
1.5 Nores
Chapter 2 Abstract Maps
2.1 Ground Sets
2.2 Basic Permutations
2.3 Conjugate Axiom
2.4 nansitive Axiom
2.5 Included Angles
2.6 Notes
Chapter 3 Duality
3.1 Dual Maps
3.2 Deletion of an Edge
3.3 Addition of an Edge
3.4 Basic Transformation
3.5 Nores
Chapter 4 Orientability
4.1 Orientation
4.2 Basic Equivalence
4.3 Euler Characteristic
4.4 Pattern Examples
4.5 Notes
Chapter 5 Orientable Maps
5.1 Butterflies
5.2 Simplified Butterflies
5.3 Reduced Rules
5.4 Orientable Principles
5.5 Orientable Genus
5.6 Notes
Chapter 6 Nonorientable Maps
6.1 Barflies
6.2 Simplified Barflies
6.3 Nonorientable Rules
6.4 Nonorientable Principles
6.5 Nonorientable Genus
6.6 Notes
Chapter 7 Isomorphisms of Maps
7.1 Commutativity
7.2 Isomorphism Theorem
7.3 Recognition
7.4 Justification
7.5 Pattern Examples
7.6 Notes
Chapter 8 Asymmetrization
8.1 Automorphisms
8.2 Upper Bounds of Group Order
8.3 Determination of the Group
8.4 Rootings
8.5 Notes
Chapter 9 Asymmetrized Petal Bundles
9.1 Orientable Petal Bundles
9.2 Planar Pedal Bundles
9.3 Nonorientable Pedal Bundles
9.4 The Number of Pedal Bundles
9.5 Notes
Chapter 10 Asymmetrized Maps
10.1 Orientable Equation
10.2 Planar Rooted Maps
10.3 Nonorientable Equation
10.4 Gross Equation
10.5 The Number of Rooted Maps
10.6 Notes
Chapter 11 Maps Within Symmetry
11.1 Symmetric Relation
11.2 An Application
11.3 Symmetric Principle
11.4 General Examples
11.5 Notes
Chapter 12 Genus Polynomials
12.1 Associate Surfaces
12.2 Layer Division of a Surface
12.3 Handle Polynomials
12.4 Crosscap Polynomials
12.5 Notes
Chapter 13 Census with Partitions
13.1 Planted Trees
13.2 Hamiltonian Cubic Maps
13.3 Halin Maps
13.4 Biboundary Inner Rooted Maps
13.5 General Maps
13.6 Pan-Flowers
13.7 Notes
Chapter 14 Equations with Partitions
14.1 The Meson Functional
14.2 General Maps on the Sphere
14.3 Nonseparable Maps on the Sphere
14.4 Maps Without Cut-Edge on Surfaces
14.5 Eulerian Maps on the Sphere
14.6 Eulerian Maps on Surfaces
14.7 Notes
Chapter 15 Upper Maps of a Graph
15.1 Semi-Automorphisms on a Graph
15.2 Automorphisms on a Graph
15.3 Relationships
15.4 Upper Maps with Symmetry
15.5 Via Asymmetrized Upper Maps
15.6 Notes
Chapter 16 Genera of Graphs
16.1 A Recursion Theorem
16.2 Maximum Genus
16.3 Minimum Genus
16.4 Average Genus
16.5 Thickness
16.6 Interlacedness
16.7 Notes
Chapter 17 Isogemial Graphs
17.1 Basic Concepts
17.2 Two Operations
17.3 Isogemial Theorem
17.4 Nonisomorphic Isogemial Graphs
17.5 Notes
Chapter 18 Surface Embeddability
18.1 Via Tree-Travels
18.2 Via Homology
18.3 Via Joint Trees
18.4 Via Configurations
18.5 Notes
Appendix 1 Concepts of Polyhedra, Surfaces, Embeddings and
Maps
Appendix 2 Table of Genus Polynomials for Embeddings and Maps of
Small Size
Appendix 3 Atlas of Rooted and Unrooted Maps for Small
Graphs
Bibliography
Terminology
Author Index